Zonal polynomials on the space of $3\times 3$ positive definite symmetric matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DDtBe for Band Symmetric Positive Definite Matrices

We present a new parallel factorization for band symmetric positive definite (s.p.d) matrices and show some of its applications. Let A be a band s.p.d matrix of order n and half bandwidth m. We show how to factor A as A =DDt Be using approximately 4nm2 jp parallel operations where p =21: is the number of processors. Having this factorization, we improve the time to solve Ax = b by a factor of m...

متن کامل

Deconvolution Density Estimation on Spaces of Positive Definite Symmetric Matrices

Motivated by applications in microwave engineering and diffusion tensor imaging, we study the problem of deconvolution density estimation on the space of positive definite symmetric matrices. We develop a nonparametric estimator for the density function of a random sample of positive definite matrices. Our estimator is based on the Helgason-Fourier transform and its inversion, the natural tools...

متن کامل

Riemannian Laplace Distribution on the Space of Symmetric Positive Definite Matrices

The Riemannian geometry of the space Pm, of m × m symmetric positive definite matrices, has provided effective tools to the fields of medical imaging, computer vision and radar signal processing. Still, an open challenge remains, which consists of extending these tools to correctly handle the presence of outliers (or abnormal data), arising from excessive noise or faulty measurements. The prese...

متن کامل

Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices

In this work we present a new generalization of the geometric mean of positive numbers on symmetric positive-definite matrices, called Log-Euclidean. The approach is based on two novel algebraic structures on symmetric positive-definite matrices: first, a lie group structure which is compatible with the usual algebraic properties of this matrix space; second, a new scalar multiplication that sm...

متن کامل

Estimation of symmetric positive-definite matrices from imperfect measurements

In a number of contexts relevant to control problems, including estimation of robot dynamics, covariance, and smart structure mass and stiffness matrices, we need to solve an over-determined set of linear equations AX ≈ B with the constraint that the matrix X be symmetric and positive definite. In the classical least squares method the measurements of A are assumed to be free of error, hence, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hiroshima Mathematical Journal

سال: 1992

ISSN: 0018-2079

DOI: 10.32917/hmj/1206392910